Documentation
Mt.Utils.Nat
Google site search
Mt.Utils.Nat
source
Imports
Init
Imported by
Mt.Utils.Nat.max_of_le
Mt.Utils.Nat.max_of_eq'
Mt.Utils.Nat.max_of_eq
Mt.Utils.Nat.max_of_gt
Mt.Utils.Nat.max_of_ge
Mt.Utils.Nat.max_of_lt
Mt.Utils.Nat.max_comm
Mt.Utils.Nat.max_assoc
Mt.Utils.Nat.zero_max
Mt.Utils.Nat.max_zero
Mt.Utils.Nat.max_le
source
ink
theorem
Mt.Utils.Nat.max_of_le
{a :
Nat
}
{b :
Nat
}
:
a
≤
b
→
Nat.max
a
b
=
b
source
ink
theorem
Mt.Utils.Nat.max_of_eq'
{a :
Nat
}
{b :
Nat
}
:
a
=
b
→
Nat.max
a
b
=
b
source
ink
theorem
Mt.Utils.Nat.max_of_eq
{a :
Nat
}
{b :
Nat
}
:
a
=
b
→
Nat.max
a
b
=
a
source
ink
theorem
Mt.Utils.Nat.max_of_gt
{a :
Nat
}
{b :
Nat
}
:
a
>
b
→
Nat.max
a
b
=
a
source
ink
theorem
Mt.Utils.Nat.max_of_ge
{a :
Nat
}
{b :
Nat
}
:
a
≥
b
→
Nat.max
a
b
=
a
source
ink
theorem
Mt.Utils.Nat.max_of_lt
{a :
Nat
}
{b :
Nat
}
:
a
<
b
→
Nat.max
a
b
=
b
source
ink
theorem
Mt.Utils.Nat.max_comm
(a :
Nat
)
(b :
Nat
)
:
Nat.max
a
b
=
Nat.max
b
a
source
ink
theorem
Mt.Utils.Nat.max_assoc
(a :
Nat
)
(b :
Nat
)
(c :
Nat
)
:
Nat.max
(
Nat.max
a
b
)
c
=
Nat.max
a
(
Nat.max
b
c
)
source
ink
theorem
Mt.Utils.Nat.zero_max
(a :
Nat
)
:
Nat.max
0
a
=
a
source
ink
theorem
Mt.Utils.Nat.max_zero
(a :
Nat
)
:
Nat.max
a
0
=
a
source
ink
theorem
Mt.Utils.Nat.max_le
{a :
Nat
}
{b :
Nat
}
{c :
Nat
}
:
Nat.max
a
b
≤
c
↔
a
≤
c
∧
b
≤
c