Documentation

Init.Data.List.Control

Remark: we can define mapM, mapM₂ and forM using Applicative instead of Monad. Example:

def mapM {m : Type u → Type v} [Applicative m] {α : Type w} {β : Type u} (f : α → m β) : List α → m (List β)
  | []    => pure []
  | a::as => List.cons <$> (f a) <*> mapM as

However, we consider f <$> a <*> b an anti-idiom because the generated code may produce unnecessary closure allocations. Suppose m is a Monad, and it uses the default implementation for Applicative.seq. Then, the compiler expands f <$> a <*> b <*> c into something equivalent to

(Functor.map f a >>= fun g_1 => Functor.map g_1 b) >>= fun g_2 => Functor.map g_2 c

In an ideal world, the compiler may eliminate the temporary closures g_1 and g_2 after it inlines Functor.map and Monad.bind. However, this can easily fail. For example, suppose Functor.map f a >>= fun g_1 => Functor.map g_1 b expanded into a match-expression. This is not unreasonable and can happen in many different ways, e.g., we are using a monad that may throw exceptions. Then, the compiler has to decide whether it will create a join-point for the continuation of the match or float it. If the compiler decides to float, then it will be able to eliminate the closures, but it may not be feasible since floating match expressions may produce exponential blowup in the code size.

Finally, we rarely use mapM with something that is not a Monad.

Users that want to use mapM with Applicative should use mapA instead.

@[inline]
def List.mapM {m : Type uType v} [inst : Monad m] {α : Type w} {β : Type u} (f : αm β) (as : List α) :
m (List β)
Equations
@[specialize #[]]
def List.mapM.loop {m : Type uType v} [inst : Monad m] {α : Type w} {β : Type u} (f : αm β) :
List αList βm (List β)
Equations
@[specialize #[]]
def List.mapA {m : Type uType v} [inst : Applicative m] {α : Type w} {β : Type u} (f : αm β) :
List αm (List β)
Equations
@[specialize #[]]
def List.forM {m : Type uType v} [inst : Monad m] {α : Type w} (as : List α) (f : αm PUnit) :
Equations
@[specialize #[]]
def List.forA {m : Type uType v} [inst : Applicative m] {α : Type w} (as : List α) (f : αm PUnit) :
Equations
@[specialize #[]]
def List.filterAuxM {m : TypeType v} [inst : Monad m] {α : Type} (f : αm Bool) :
List αList αm (List α)
Equations
@[inline]
def List.filterM {m : TypeType v} [inst : Monad m] {α : Type} (f : αm Bool) (as : List α) :
m (List α)
Equations
@[inline]
def List.filterRevM {m : TypeType v} [inst : Monad m] {α : Type} (f : αm Bool) (as : List α) :
m (List α)
Equations
@[inline]
def List.filterMapM {m : Type uType v} [inst : Monad m] {α : Type u} {β : Type u} (f : αm (Option β)) (as : List α) :
m (List β)
Equations
@[specialize #[]]
def List.filterMapM.loop {m : Type uType v} [inst : Monad m] {α : Type u} {β : Type u} (f : αm (Option β)) :
List αList βm (List β)
Equations
@[specialize #[]]
def List.foldlM {m : Type uType v} [inst : Monad m] {s : Type u} {α : Type w} (f : sαm s) (init : s) :
List αm s
Equations
@[inline]
def List.foldrM {m : Type uType v} [inst : Monad m] {s : Type u} {α : Type w} (f : αsm s) (init : s) (l : List α) :
m s
Equations
@[specialize #[]]
def List.firstM {m : Type uType v} [inst : Monad m] [inst : Alternative m] {α : Type w} {β : Type u} (f : αm β) :
List αm β
Equations
@[specialize #[]]
def List.anyM {m : TypeType u} [inst : Monad m] {α : Type v} (f : αm Bool) :
List αm Bool
Equations
@[specialize #[]]
def List.allM {m : TypeType u} [inst : Monad m] {α : Type v} (f : αm Bool) :
List αm Bool
Equations
@[specialize #[]]
def List.findM? {m : TypeType u} [inst : Monad m] {α : Type} (p : αm Bool) :
List αm (Option α)
Equations
@[specialize #[]]
def List.findSomeM? {m : Type uType v} [inst : Monad m] {α : Type w} {β : Type u} (f : αm (Option β)) :
List αm (Option β)
Equations
@[inline]
def List.forIn {α : Type u} {β : Type v} {m : Type vType w} [inst : Monad m] (as : List α) (init : β) (f : αβm (ForInStep β)) :
m β
Equations
@[specialize #[]]
def List.forIn.loop {α : Type u} {β : Type v} {m : Type vType w} [inst : Monad m] (f : αβm (ForInStep β)) :
List αβm β
Equations
instance List.instForInList {m : Type u_1Type u_2} {α : Type u_3} :
ForIn m (List α) α
Equations
  • List.instForInList = { forIn := fun {β} [Monad m] => List.forIn }
@[simp]
theorem List.forIn_nil {m : Type u_1Type u_2} {α : Type u_3} {β : Type u_1} [inst : Monad m] (f : αβm (ForInStep β)) (b : β) :
forIn [] b f = pure b
@[simp]
theorem List.forIn_cons {m : Type u_1Type u_2} {α : Type u_3} {β : Type u_1} [inst : Monad m] (f : αβm (ForInStep β)) (a : α) (as : List α) (b : β) :
forIn (a :: as) b f = do let x ← f a b match x with | ForInStep.done b => pure b | ForInStep.yield b => forIn as b f
@[inline]
def List.forIn' {α : Type u} {β : Type v} {m : Type vType w} [inst : Monad m] (as : List α) (init : β) (f : (a : α) → a asβm (ForInStep β)) :
m β
Equations
@[specialize #[]]
def List.forIn'.loop {α : Type u} {β : Type v} {m : Type vType w} [inst : Monad m] (as : List α) (f : (a : α) → a asβm (ForInStep β)) (as' : List α) (b : β) :
(bs, bs ++ as' = as) → m β
Equations
  • One or more equations did not get rendered due to their size.
  • List.forIn'.loop as f [] _fun_discr x = pure _fun_discr
instance List.instForIn'ListInferInstanceMembershipInstMembershipList {m : Type u_1Type u_2} {α : Type u_3} :
ForIn' m (List α) α inferInstance
Equations
  • List.instForIn'ListInferInstanceMembershipInstMembershipList = { forIn' := fun {β} [Monad m] => List.forIn' }
@[simp]
theorem List.forIn'_eq_forIn {α : Type u} {β : Type v} {m : Type vType w} [inst : Monad m] (as : List α) (init : β) (f : αβm (ForInStep β)) :
(forIn' as init fun a x b => f a b) = forIn as init f
instance List.instForMList {m : Type u_1Type u_2} {α : Type u_3} :
ForM m (List α) α
Equations
  • List.instForMList = { forM := fun [Monad m] => List.forM }
@[simp]
theorem List.forM_nil {m : Type u_1Type u_2} {α : Type u_3} [inst : Monad m] (f : αm PUnit) :
@[simp]
theorem List.forM_cons {m : Type u_1Type u_2} {α : Type u_3} [inst : Monad m] (f : αm PUnit) (a : α) (as : List α) :
forM (a :: as) f = do f a forM as f
Equations